Diagnosis, Therapy and Follow-Up of Diabetes Mellitus in Children and Adolescents

Authors
Andreas Neu1, Jutta Bürger-Busing2, Thomas Danne3, Axel Dost4, Martin Holder5, Reinhard W. Holl6, Paul-Martin Holterhus7, Thomas Kapellen8, Beate Karges9, Olga Kordonouri3, Karin Lange10, Susanne Muller11, Klemens Raile12, Roland Schweizer1, Simone von Sengbusch13, Rainer Stachow14, Verena Wagner15, Susanna Wiegand12, Ralph Ziegler16

Affiliations
1 Clinic for Paediatrics and Youth Medicine, University Hospital, Tubingen, Germany
2 Association of Diabetic Children and Adolescents, Diabetes Center, Kaiserslautern, Germany
3 Paediatric and Juvenile Hospital, Hanover, Germany
4 Clinic for Paediatrics and Juvenile Medicine, University Hospital Jena, Germany
5 Olga Hospital, Clinic Stuttgart, Germany
6 Institute for Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Germany
7 Clinic for General Paediatrics, University Hospital Schleswig-Holstein, Kiel Campus, Germany
8 Clinic and Polyclinic for Paediatrics and Juvenile Medicine, University Hospital, Leipzig, Germany
9 Endocrinology and Diabetology Section, University Hospital, RWTH Aachen University, Germany
10 Medical Psychology, Hannover Medical School, Hannover, Germany
11 Practice for Nutrition Consultation, Ennepetal, Germany
12 Virchow-Clinic, University Medicine, Berlin, Germany
13 Clinic for Paediatrics and Juvenile Medicine, University Hospital Schleswig-Holstein, Campus Lubeck, Germany
14 Sylt Specialist Clinic for Children and Adolescents, Westerland, Germany
15 Joint Practice for Paediatrics and Juvenile Medicine, Rostock, Germany
16 Practice for Paediatrics and Juvenile Medicine, Focus on Diabetology, Muenster, Germany

Bibliography
DOI https://doi.org/10.1055/a-1018-8963
© J. A. Barth Verlag in Georg Thieme
Verlag KG Stuttgart · New York
ISSN 0947-7349

Correspondence
Prof. Dr. med. Andreas Neu
University Hospital Tubingen Clinic for Paediatrics and Juvenile Medicine
Hoppe-Seyler-Straße 1
72076 Tubingen
Germany
andreas.neu@med.uni-tuebingen.de

PD Dr. med. Thomas Kapellen
AGPD Spokesman University Hospital, Liebigstraße 20-22
04103 Leipzig
Germany
thomas.kapellen@medizin.unileipzig.de

Causes and Background
The improvement of the care of children and adolescents with diabetes mellitus is an essential task of the Working Group for Paediatric Diabetology/Arbeitsgemeinschaft für Pädiatrische Diabetologie (AGPD).

In order to meet the needs of a chronic disease in childhood and adolescence, specific aspects of this stage of life must be taken into account.

The present recommendations are addressed to all professional groups that care for and support children and adolescents with diabetes and their families, as well as to higher-level organisations (e.g. health insurance companies) that are involved with or affected by the disease.

In accordance with the specifications of the health ministers of the federal German states as well as the current practice of many clinics, these paediatric guidelines are valid until the age of up to 18 years.

In individual clinical cases, however, these guidelines can also be extended to apply to early adulthood.
Epidemiology and Types of Diabetes in Childhood and Adolescence

Type 1 diabetes
Type 1 diabetes is still the most common metabolic disease in children. According to current estimates, 15,600 to 17,400 children and adolescents aged 0–14 years live with type 1 diabetes in Germany [Rosenbauer et al. 2013].

At the beginning of the millennium, 21,000 to 24,000 children and adolescents aged 0–19 years were affected [Rosenbauer et al. 2002]. This figure is currently estimated at around 30,000 to 32,000 [Rosenbauer et al. 2012].

In the 1990s, average annual new illness rates (incidence rates) were reported between 12.9 (95% confidence interval 12.4–13.4) and 14.2 (95% confidence interval 12.9–15.5) per 100,000 children aged 0–14 years and 17.0 (95% confidence interval 15.2–18.8) per 100,000 children aged 0–19 years [Neu et al. 2001]; [Rosenbauer et al. 2002]; [Neu et al. 2008]. The incidence rate has increased by 3–4% per year [Ehehalt et al. 2008]; [Neu et al. 2013]. Compared to the early 1990s, the new illness rate for 0–14-year-olds has now doubled and is currently 22.9 (95% confidence interval 22.2–23.6). The increase in incidence rates especially affects the younger age groups.

Type 2 diabetes
Parallel to the increase in the prevalence of excess weight and adiposity in childhood and adolescence [Kurth and Schaffrath (2007)]; [Kromeyer-Hauschild et al. 2001], the incidence of type 2 diabetes has increased in this age group. [Initial population-based estimates of type 2 Diabetes Prevention Trial-Type 1 Diabetes Study Group (2002)] showed an incidence of 1.57 per 100,000 (95% confidence interval 0.98–2.42) [Rosenbauer et al. 2003]. [Studies carried out in Mann et al. (2004)] showed that type 2 diabetes in Germany occurs in 0 to 20-year-olds with a prevalence of 2.3 per 100,000 [Neu et al. 2005]. A second cross-sectional survey in Baden-Württemberg conducted in 2016 confirmed the relatively low and constant incidence of 2.4 per 100,000 [Neu et al. 2017].

Risk Factors, Prevention and Early Detection of Diabetes
According to the current guidelines of the International Pediatric Diabetes Association/Internationalen Pädiatrischen Diabetesgesellschaft ISPAD, the progression of type 1 diabetes has recently been divided into 4 stages [Couper et al., (2018)]. Stage 1, the beginning of type 1 diabetes according to the new classification, is when 2 or more diabetes-specific autoantibodies are detectable but children and adolescents are completely asymptomatic. If glucose tolerance is impaired, this corresponds to stage 2. Stage 1 and stage 2 can precede months and years of clinical manifestation. Stage 3 is when there is a manifestation and stage 4 is the case of a type 1 diabetic who has lived with the disease for some time.

Measures to maintain beta cell function can start before the onset of islet autoimmunity (early stage 1, primary prevention), after the development of autoantibodies but before clinical symptoms (stages 1 and 2) or rapidly after the manifestation of type 1 diabetes (stage 3). The progression of type 1 diabetes with proven autoantibodies occurs more rapidly with seroconversion to islet autoimmunity before the 3rd year of life and in children with an HLA-DR3/DR4-DQ8 genotype [Ziegler et al., (2013)].

The 5 and 10-year risk of type 1 diabetes manifestation in children who show multiple autoantibodies at the age of 5 years or earlier is 51 and 75%, respectively [Danne et al., (2018)], German Health Report Diabetes/Dt. Gesundheitsbericht Diabetes.

Type 1 diabetes
The diagnosis of type 1 diabetes is based on clinical symptoms and blood glucose monitoring. In case of doubt, further parameters can be used for diagnosis. These include:

- Autoantibodies associated with diabetes (ICA, GAD65, IA-2, IAA, ZnT8),
- An oral glucose tolerance test, and
- Determination of HbA1c [Ehehalt et al. 2010]; [Mayer-Davis et al., (2018)].

10–15% of all children and adolescents under the age of 15 with type 1 diabetes have first-degree relatives with diabetes and thus a positive family history [Rosenbauer et al. 2003]; [Scottish Study Group for the Care of the Young Diabetic (2001)]. The risk of developing diabetes is 3 times higher for children with a father suffering from diabetes than for children with a mother suffering from diabetes [Gale and Gillespie (2001)]. While antibodies and other markers might provide a prediction and risk calculation regarding the occurrence of diabetes, there are no effective prevention strategies that could prevent the manifestation of diabetes [Rosenbloom et al. 2000]; [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC 2005a)].

A general screening for type 1 diabetes should therefore not be performed in the general population or in high-risk groups among children and adolescents [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC 2005b)]. According to the latest recommendations gleaned from scientific studies, screening and intervention in the absence of symptoms of type 1 diabetes remain reserved [Couper et al., (2018)].

Type 2 diabetes
An oral glucose tolerance test for the early detection of type 2 diabetes should be performed as of age 10 in cases of excess weight (BMI > 90th percentile) and the presence of at least 2 of the following risk factors:

- Type 2 diabetes in 1st or 2nd degree relatives,
- Belonging to a group with increased risk (e.g. East Asians, African Americans, Hispanics),
- Extreme obesity (BMI > 99.5th percentile) or
- Signs of insulin resistance or changes associated with it (arterial hypertension, dyslipidaemia, elevated transaminases, polycystic ovarian syndrome, acanthosis nigricans)

[Working Group for Obesity in Childhood and Adolescence (AGA) 2008/Arbeitsgemeinschaft Adipositas im Kindes- und Jugendalter AGA (2008)].
Therapy for Type 1 Diabetes

Start of therapy

Insulin therapy should be initiated immediately after the diagnosis of type 1 diabetes, as the child’s metabolism can deteriorate rapidly. A diabetes team experienced with children should be called in as soon as possible [Bangstad et al. 2007].

Therapy goals

Initial treatment and long-term care should be carried out by a team experienced in paediatric diabetology continuously from age 1–18, and, in certain cases, also up to the age of 21. Specialised care has been shown to contribute to a reduction in hospital days and readmissions, to a lower HbA1c value, better disease management and fewer complications [Cadario et al. 2009]; [Pihoker et al. 2014]; Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005c)].

The treatment of type 1 diabetes by the treatment team should include:
- Insulin therapy,
- Individual metabolic self-monitoring,
- Age-adapted structured training as well as
- Psychosocial care for the affected families.

The following medical goals are in the foreground when caring for paediatric patients with diabetes mellitus [Danne et al. 2014]; [Ziegler and Neu (2018)]: avoidance of acute metabolic lapses, prevention of diabetes-related microvascular and macrovascular secondary diseases and normal physical development (growth in height, weight gain, begin of puberty). The patient’s psychosocial development should be affected as little as possible by diabetes and its therapy, and integration and inclusion in day care, school and vocational training should be ensured.

Individual therapy goals should be formulated together with the child or adolescent and his or her family (HbA1c value, blood glucose target ranges, behavioural changes that come with risk-taking lifestyles, integration efforts, etc.).

The HbA1c target value of < 7.5 % was modified in 2018 by the ISPAD to a new target value of < 7.0 %, the ADA recommendations still lie at < 7.5 %, whereas the English NICE recommendations assume a target value of < 6.5 % [DiMeglio et al., (2018)].

An additional parameter for evaluating the metabolic state is the time spent in the target range (TIR = time in range). As a rule, the target range is defined as 70–180 mg/dl. An individual goal for the duration of the TIR is recommended [Danne et al., (2017)]; [Battelino et al., (2019)].

Preprandial glucose values should be between 70 and 130 mg/dl (4.0–7.0 mmol/l) and postprandial values between 90 and 180 mg/dl (5.0–10.0 mmol/l). Values of 80–140 mg/dl (4.4–7.8 mmol/l) are recommended at bedtime [DiMeglio et al., (2018)].

The average frequency of glucose control should be between 5 and 6 times a day but can be significantly higher in individual cases [Ziegler et al. 2011].

Continuous treatment of type 1 diabetes

The continuity of the treatment of diabetes mellitus of a child or adolescent with diabetes, both over time and during different phases of life and development, is decisive for ensuring a metabolic situation as close as possible to normoglycaemia and an unencumbered psychosocial development.

Care of children in day cares and schools

Children with diabetes should be cared for in day cares, regular schools and after-school centres [Hellems and Clarke (2007)]. The right to inclusion is laid down in § 53 and § 54 of the German Social Code Book XII/Sozialgesetzbuch XII. This provides the basis for the assumption of costs for age-appropriate care.

An individual plan should be created for each institution which includes the frequency and intervention limits of blood glucose measurements, the delivery of insulin (mode, time, dose calculation), defining of mealtimes, symptoms and management of hypoglycaemias and hyperglycaemias [American Diabetes Association ADA (2015)]. In addition to children, adolescents and their parents, all caregivers in the social environment must be trained to enable inclusion [Ziegler and Neu (2018)].

Support during the transition to young adulthood

The transition from paediatric to adult care affects young people with diabetes aged 16–21 years in a life phase of general upheaval and should therefore be accompanied. Various models (transitional consultations, structured paediatric/internal medicine transition, etc.) are practised [Nakhla et al. 2008]; Australian Paediatric Endocrine Group et al. 2005; [Court et al., (2008)].

Care in case of illness and preventing illness risks

In the case of serious illnesses or perioperatively, children with diabetes should be referred to an experienced centre with well-trained staff. The paediatric diabetologist should also be consulted [Brink et al. 2007].

Under no circumstances should insulin be completely omitted in the case of low glucose levels or refusal to eat. The administration of carbohydrates is necessary in order to avoid substrate deficiency and ketone body formation. The possibility of measuring β-hydroxybutyrate should be provided [Laffel et al., (2018)].

Children with diabetes mellitus should be vaccinated according to STIKO recommendations.

Diabetes treatment during physical activity/sports

Regular exercise should be a matter of course for children and adolescents with diabetes and improves metabolic control.

Regular swimming has been shown to significantly reduce HbA1c [Sideravicite et al. 2006].

Since blood glucose is lowered by energy consumption during physical activity, the risk of hypoglycaemia is increased. The strongest predictor for hypoglycaemia is the initial glucose value, which should be at least 120 mg/dl (6.6 mmol/l); otherwise additional carbohydrates may be required [Tansey et al. 2006]. Individual therapy plans with insulin dose adjustment and corresponding behavioural rules should be put together for each patient [Adolfsson et al., (2018)].
Insulin treatment

The standard treatment for paediatric patients with type 1 diabetes is intensified insulin therapy [Danne et al., (2018)].

All insulin therapy should be carried out as part of comprehensive diabetic care and with the support of the family.

Insulin therapy should be individually tailored to each child [Diabetes Control and Complications Trial Research Group 1995; [White et al. 2008]; [Nathan et al. 2005]; [Musen et al. 2008].

Human insulin or insulin analogues should be used for paediatric patients [Bangstad et al. 2007]; [Danne et al. 2005]; [Mortensen et al. 2000]; [Deeb et al. 2001]; [Plank et al. 2005]; [Simpson et al. 2007].

Normal insulin should be used for intravenous insulin treatment.

Rapid-acting insulin and insulin analogues (prandial substitution)

There are differences between rapid-acting human insulin and fast-acting insulin analogues in the onset and duration of action in children and can be used flexibly for prandial substitution in children depending on the situation [Danne et al. 2005]; [Mortensen et al. 2000].

Rapid-acting insulin analogues should be used for insulin pump therapy.

Long-acting insulin and insulin analogues (basal substitution)

Both NPH insulin and long-acting insulin analogues can be used individually for basal insulin substitution in children [Danne et al. 2003]; [Danne et al. 2008]; [Thisted et al. 2006]; [Robertson et al. 2007]; [Danne et al. 2013]; [Thalange et al. 2015].

Insulin pump therapy

Insulin pump therapy for children and adolescents is both safe and effective. It has a positive effect on the frequency of hypoglycaemia, ketoacidosis and the metabolism [Karges et al., (2017)]. Particularly in young children, pump therapy enables better adjustment of the insulin dose, especially at night, thus helping to prevent hypoglycaemias. Insulin pump therapy is recommended for the following indications:

- Small children, especially new-borns, infants and pre-schoolers,
- Children and adolescents with a marked increase in blood glucose in the early morning hours (Dawn phenomenon),
- Severe hypoglycaemias, recurrent and nocturnal hypoglycaemias (despite intensified conventional therapy = ICT),
- HbA1c value outside target range (despite ICT),
- Severe blood glucose fluctuations despite ICT independent of the HbA1c value,
- Incipient microvascular or macrovascular secondary diseases,
- Limitation of the quality of life through previous insulin therapy
- Children with a great fear of needles,
- Pregnant adolescents (ideally before conception in the case of a planned pregnancy) as well as
- Competitive athletes [Phillip et al. 2007].

Continuous glucose monitoring (CGM), sensor-augmented insulin therapy (SaT) and sensor-augmented pump therapy (SaP)

CGM systems have been approved and can be prescribed for children and adolescents. They are available in the form of rt (real-time) CGM systems and in the form of isc (intermittent scanning) CGM systems. They can be used in combination with ICT (sensor-augmented insulin therapy = SaT). Some CGM systems can be used together with an insulin pump, or the insulin pump can serve as a monitor for CGM data. This combination (CSII + CGM) is now called sensor-augmented pump therapy SaP. In addition, there is the possibility of switching off the basal rate when the tissue glucose reaches a critical limit (SaP + LGS = low-glucose suspend). A further development of the LGS already interrupts the supply of insulin if it predicts that hypoglycaemia will occur in the foreseeable future (predicted or predictive insulin switch-off, predictive low-glucose suspend = PLGS). The combination of both systems is called sensor-integrated pump therapy (SiP). In other countries, pump models in combination with a CGM system are already available that allow insulin dose adjustment at both high and low glucose levels through automatic basal rate adjustment.

CGM should be used for children and adolescents with type 1 diabetes and insulin pump therapy

- To reduce the hypoglycaemia rate (frequency, duration, depth) or
- In cases of recurrent nocturnal hypoglycaemia or
- In cases of a lack of hypoglycaemia perception or
- In cases of severe hypoglycaemia or
- For improvement of metabolic control without a simultaneous increase in hypoglycaemias
- To reduce pronounced glucose variability

CGM should be used in paediatric patients with type 1 diabetes who have not achieved their HbA1c targets after having considered and used other measures and training courses for optimizing metabolic control [Battelino et al. 2012]; [Bergenstal et al. 2010]; [Danne et al., (2017)]; [Sherr et al., (2018)].

Nutritional recommendations

Nutritional counselling for children and adolescents with diabetes is an important part of a comprehensive therapy training plan and should include the following components:

- Information on the blood glucose efficacy of carbohydrates, fats and proteins,
- Strengthening healthy diets as part of family meals and in public institutions: regular, balanced meals and snacks (fruit, vegetables, raw vegetables), prevention of eating disorders (especially uncontrolled, binge eating) and the prevention of excess weight,
- Consideration of cultural eating habits,
- Enough energy for age-appropriate growth and development,
- Working toward a normal BMI, which includes regular physical activity,
- A good balance between energy intake and consumption in accordance with the insulin profiles,
- Nutrition during illness and sport and
- Reducing the risk of cardiovascular disease.
Nutrition specialists (dieticians/ecotrophologists) with an in-depth knowledge of paediatric and juvenile nutrition and insulin therapy should provide this counselling [Smart et al. 2014]; [Craig et al. 2011].

Nutritional recommendations should include all dietary components and their share in daily energy intake [German Nutrition Society/Deutsche Gesellschaft für Ernährung DGE (2015)].

Diabetes training

Patient training is an essential part of diabetes therapy. It cannot be successful without adequate, individualised medical treatment [Bloomgarden et al. 1987]; [de Weerdt et al. 1991].

Children, adolescents and their parents or other primary caregivers should have continuous access to qualified training starting from the time of diagnosis onwards [Craig et al. 2011]; [Bundesärztekammer BÄK, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften AWMF, Kassenärztliche Bundesvereinigung KBV (2012)]; [Canadian Diabetes Association Clinical Practice Guidelines Expert Committee 2013]; [Kulzer et al.; (2013a)]; [Martin et al. 2012]; [Lange et al. 2014]; [Haas et al. 2014]. Training should be offered to caregivers in institutions (e.g. teachers in schools, educators in day cares, nurseries, after-school centres or group homes) [Hellums and Clarke (2007)]; [Lange et al. 2012]; [Clarke et al. 2013].

The training should be conducted by a multi-professional diabetes team with proper knowledge of age-specific needs, possibilities and requirements that current diabetes therapies place on patients and their families.

All team members should participate in the training and work toward formulating and achieving uniform therapy concepts and goals [Swift et al. 2010]; [Lange et al. 2014]; [Cameron et al. 2013].

The learning process should be accompanied by evaluated training materials that are oriented towards the cognitive development and needs of children and adolescents. The same applies to training materials for parents which should include parental educational tasks and age-specific diabetes therapy of their children [Martin et al. 2012]; [Lange et al. 2012]; [Lange et al. 2014].

Diabetic training is a continuous process and can only be successful through repeated needs-based offers (at least every 2 years) during long-term care. New therapy concepts, e.g. the start of insulin pump therapy or continuous glucose monitoring (CGM) and new life stages (e.g. school enrolment) should be accompanied by additional training. Other diseases (e.g. celiac disease or ADHD) or acute complications (e.g. DKA, severe hypoglycaemias) or psychological problems require personalised treatment [Jacobson et al. 1997]; [Haas et al. 2014]; [Lange et al. 2014]; [Delamater et al. 2014].

Rehabilitation

In-patient rehabilitation can be carried out:

- In the case of persistently poor skills in dealing with diabetes,
- If there are diabetic secondary complications which are either already present or threaten to arise in the short-term,
- After the in-patient primary therapy of the newly diagnosed diabetes mellitus if initial training cannot be provided near the patient’s home (in the form of follow-up treatment),
- In the case of long-term inadequate metabolic control under out-patient care conditions, e.g. recurrent hypoglycaemia or ketoacidosis, and
- In the event of serious disruptions to activities and/or to the child or adolescent being able to participate in age-appropriate activities or in everyday life, e.g. frequent sick days (§ 4 SGB 9; Federal Working Group for Rehabilitation/Bundesarbeitsgemeinschaft Rehabilitation)

Psychological and Social Risks, Comorbidities and Interventions

In the case of a diabetes diagnosis, a history of the psychosocial family situation should be recorded. The families should also receive psychosocial counselling and the interdisciplinary team should provide them with therapeutic aids for diabetes management. The psychological situation of the parents and other primary caregivers also needs to be taken into account [Hürter and Otten (1991)]; [Sundelin et al. 1996]; [Delamater et al. 1990]; [Craig et al. 2011]; [Delamater et al. 2014]; [Forsander et al. 1998]; [Sullivan-Bolyai et al. 2011]; [Forsander et al. 2000]; [Zenlea et al. 2014].

The current psychosocial situation and possibly stressful life events should be continuously recorded within the framework of long-term care (intellectual, academic, emotional and social development) and taken into account in therapy planning.

For this reason, it is important for social workers and psychologists with diabetes-specific expertise to be an integral part of the interdisciplinary diabetes team [Silverstein et al. 2005]; [Craig et al. 2011]; [de Wit et al. 2008]; [Delamater et al. 2014]; [Kulzer et al. (2013a)]; [Hilliard et al. 2011]; [Haas et al. 2014]; [de Wit et al. (2012)].

Particularly in adolescents, signs of eating disorders and mood affective disorders (e.g. anxiety, depression, adjustment disorders) should be monitored and professional help sought and carried out in a timely manner.

If a psychiatrically relevant disorder is present, paediatric and juvenile psychiatrists or psychological psychotherapists should be consulted in order to initiate co-treatment if necessary. A coordinated treatment between psychiatrist and diabetes team should be strived for [Northam et al. 2005]; [Lawrence et al. 2006]; [Delamater et al. 2014]; [Kulzer et al. (2013b)]; [Young et al. 2013].

Children and adolescents with diabetes have an increased risk of impaired information processing and learning. Children with early onset diabetes, severe hypoglycaemias and chronic hyperglycaemias in early life are particularly affected.

Therefore, the school performance of children with increased risk (diabetes diagnosis under 5 years, severe/chronic hyperglycaemias) should be recorded. In case of learning difficulties, they just as all children, should be neuro-physiologically and psychological-
Acute Complications

Diabetic ketoacidosis

Diabetic ketoacidosis is a potentially life-threatening disease. It should be treated immediately in a specialized facility by a diabetes team experienced with children. A written treatment plan for treating diabetic ketoacidosis in children and adolescents should exist [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005d)]; [Glaser et al. 2006]; [Fiordalisi et al. 2007]. The biochemical criteria for ketoacidosis include:

- pH < 7.3,
- Bicarbonate < 15 mmol/l,
- Hyperglycaemia > 11 mmol/l, > 200 mg/dl and
- Ketonuria and presence of ketones in serum.

Ketoacidosis is categorised into 3 stages of severity:

- Mild (pH < 7.3; bicarbonate < 15 mmol/l),
- Moderate (pH < 7.2; bicarbonate < 10 mmol/l) and
- Severe (pH < 7.1; bicarbonate 5 mmol/l)

[Wolfsdorf et al. 2007].

The following therapy goals are to be pursued in ketoacidosis:

- Stabilisation of cardiovascular system with initial volume bolus using isotonic fluid,
- Subsequent slow, balanced fluid resuscitation and electrolyte replacement,
- Slow normalization of blood glucose,
- Balance out acidosis and ketosis,
- Avoidance of therapy complications (cerebral oedema, hypokalaemia) and
- Diagnosis and therapy of triggering factors [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005f)]; [Wolfsdorf et al. 2018].

During the treatment of severe diabetic ketoacidoses, clinical observation and monitoring should take place at least every hour [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005e)]; [Edge et al. 2006]; [Wolfsdorf et al. 2018].

Patients with severe ketoacidosis and an increased risk of cerebral oedema should be treated immediately in an intensive care unit or a specialized diabetes unit with comparable equipment by a diabetes team experienced with children.

Patients with suspected cerebral oedema should be treated in an intensive care unit in cooperation with an experienced diabetes team [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005f)]; [Wolfsdorf et al. 2018].

Patients with clear signs of cerebral oedema should be treated with mannitol or hypertonic saline solution before further diagnostic measures (MRT) are initiated [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005f)]; [Fiordalisi et al. 2007]; [Hanas et al. 2007]; [Wolfsdorf et al. 2018].

Case reports or case series are available on the therapeutic efficacy in symptomatic cerebral oedema of an early intravenous mannitol administration (0.5–1 g/kg) over 10–15 min and repeated if necessary (after 30 min.) [Fiordalisi et al. 2007]; [Hanas et al. 2007]; [Wolfsdorf et al. 2018].

Hypoglycaemia

Hypoglycaemia is the most common acute complication in diabetes [Diabetes Control and Complications Trial Research Group 1994].

According to the latest recommendation by the Hypoglycaemia Study Group [International Hypoglycaemia Study Group (2017)], a distinction is made between blood glucose values in the following groups:

- Normal (pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h))
- Lowering of blood glucose (pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h))
- Hypokalaemia (pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h))
- Hyperkalaemia (pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h))
- Ketoacidosis (pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h))
- Hyperglycaemia (pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h))
- Ketonuria and presence of ketones in serum.

The following therapy goals are to be pursued in ketoacidosis:

- Stabilisation of cardiovascular system with initial volume bolus using isotonic fluid,
- Subsequent slow, balanced fluid resuscitation and electrolyte replacement,
- Slow normalization of blood glucose,
- Balance out acidosis and ketosis,
- Avoidance of therapy complications (cerebral oedema, hypokalaemia) and
- Diagnosis and therapy of triggering factors [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005f)].

Table 1 Medicinal treatment of ketoacidosis (taking the control of electrolytes, pH, blood glucose, ketone bodies into consideration).

<table>
<thead>
<tr>
<th>Treatment goal/indication</th>
<th>Medicine</th>
<th>Dose</th>
<th>Chronological sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilisation of cardiovascular system, if necessary</td>
<td>NaCl 0.9 %</td>
<td>10–20 ml/kg IV</td>
<td>Immediately over 1–2 h</td>
</tr>
<tr>
<td>Fluid resuscitation after initial cardiovascular stabilisation</td>
<td>NaCl 0.9 % or Ringer’s solution, after 4–6 h NaCl 0.45 % also possible</td>
<td>Maximum daily IV dose < 1.5 to 2 times the maintenance requirement in relation to age/weight/body</td>
<td>At least over 36–48 h</td>
</tr>
<tr>
<td>Lowering of blood glucose</td>
<td>Normal insulin</td>
<td>0.1U/kg/h IV, for younger children 0.05U/kg/h</td>
<td>Begin insulin administration 1–2 h after start of volume administration; no interruption of insulin delivery up to pH > 7.3; lowering of blood glucose by 2–5 mmol/l/h (36–90 mg/dl/h)</td>
</tr>
<tr>
<td>Avoidance of hypoglycaemia</td>
<td>Glucose</td>
<td>Final concentration: 5% glucose/0.45 % NaCl solution</td>
<td>Start from BG as of 15 mmol/l (270 mg/dl) or at lowering of BG > 5 mmol/l/h (90 mg/dl/h)</td>
</tr>
<tr>
<td>Balance of potassium</td>
<td>KCl</td>
<td>40 mmol/l volume; 5 mmol/kg/day IV; not > 0.5 mmol/kg/h</td>
<td>For hypokalaemia immediately, for normokalaemia with the onset of insulin administration, in the case of hyperkalaemia only after resumption of urine production; continuous administration until volume compensation has been fully compensated</td>
</tr>
</tbody>
</table>
Stage 1: < 70 mg/dl (3.9 mmol/l), requires attention and treatment, if necessary
Stage 2: < 54 mg/dl (3 mmol/l), always requires immediate treatment and
Stage 3: with impaired consciousness, always requires immediate treatment.

Slight hypoglycaemia can be corrected by the patient through the intake of fast-acting carbohydrates.
Severe hypoglycaemia can only be remedied by external help due to the accompanying limitation or loss of consciousness. In addition to a loss of consciousness, a severe hypoglycaemia can also be accompanied by a cerebral seizure.

Children and adolescents with type 1 diabetes should always carry fast-acting carbohydrates in the form of glucose or similar, in order to be able to act immediately in the event of mild hypoglycaemia and thus prevent severe hypoglycaemia. Parents or other primary caregivers should be instructed in the use of glucagon injections or other immediate measures.

Caregivers in e.g. day cares, day-care centres and teachers in schools should also receive instruction on the risks and treatment options for hypoglycaemia.

In the case of hypoglycaemia perception disorder, a higher blood glucose level should be temporarily set [Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council NHMRC (2005f)]; [Clarke et al. 2008].

The use of a CGM system with hypoglycaemia suspend should also be considered.

Long-term Complications and Preventive Examinations (Screening)

The HbA1c value should be determined at least every 3 months to check metabolic control [Diabetes Control and Complications Trial Research Group 1994]; [Nathan et al. 2005]; [White et al. 2008]. All other long-term controls are listed in ▶ Table 2.

Associated Autoimmune Diseases

Diagnostics and therapy of thyroid diseases

In children and adolescents with diabetes, TSH determination and determination of thyroid autoantibodies (anti-TPO, TgAb) should be performed upon diabetes manifestation and at regular intervals of 1–2 years or with associated symptoms [Australasian Paediatric Endocrine Group et al. 2005; [Bangstad et al. 2007]; [Silverstein et al. 2005]; [Kordonouri et al. 2011].

If TPO a TSH increase and/or autoantibodies are present, a sonography of the thyroid gland should be performed.

For the therapy of autoimmune hypothyroidism or struma, L-thyroxine should be used according to the therapy plan (▶ Fig. 1).

Diagnostics and therapy of celiac disease

Children and adolescents with diabetes are to be examined for celiac disease in the event of diabetes manifestation and at intervals of 1–2 years and in the case of associated symptoms [Australasian...
Other Forms of Diabetes in Childhood and Adolescence

Type 2 diabetes

Type 2 diabetes in adolescents should be diagnosed according to the limits for fasting glucose and oral glucose tolerance test (OGTT) using the standard or reference method.

If the following limit values are exceeded, the result in asymptomatic patients must be confirmed by a second test on a later day:
- fasting glucose: > 126 mg/dl (> 7.0 mmol/l) and
- OGTT: 2h value > 200 mg/dl (> 11.1 mmol/l) [Genuth et al. 2003].

Additional laboratory tests can provide information on the differentiation between type 2 diabetes and type 1 diabetes:
- c-peptide and
- diabetes-specific autoantibodies (GAD, IA-2, ICA, IAA, ZnT8) [Alberti et al. 2004]; [Genuth et al. 2003].

In the treatment of type 2 diabetes in adolescents (Fig. 2) [Alberti et al. 2004]), the target fasting glucose should be < 126 mg/dl and the target HbA1c value should be < 7 % [Zeitler et al. 2014]; [UK Prospective Diabetes Study UKPDS Group (1998a)]; [Holman et al. 2008].

Training for adolescents with type 2 diabetes should include nutritional counselling and guidance on physical activity as part of a structured obesity programme [Reinehr et al. 2007]; [Working Group for Obesity in Childhood and Adolescence/Arbeitsgemeinschaft Adipositas im Kindes- und Jugendalter AGA (2008)].

In addition, individually tailored modular training for type 2 diabetes should take place using the relevant contents from the type 1 diabetes training.

At a starting HbA1c value of ≥ 9 % or spontaneous hyperglycaemia ≥ 250 mg/dl and with signs of absolute insulin deficiency (ketonuria, ketoacidosis), an initial insulin therapy should be started. In all other cases, metformin is the first drug of choice for drug therapy in children and adolescents [Shimazaki et al. 2007]; [UK Prospective Diabetes Study UKPDS Group (1998b)]; [Jones et al. 2002]; [Gottschalk et al. 2007]; [Zeitler et al. 2014]. In addition to insulin, metformin is currently the only approved drug for this age group.
Monogenetic diabetes

A molecular genetic diagnosis of the most common MODY forms can be recommended in cases of justified assumptions because of its importance for therapy, long-term prognosis and genetic counselling of families [Hattersley et al. 2006]; [Ellard et al. 2008] (▶ Table 3).

Before the affected genes are sequenced, counselling and information must be provided in accordance with the Gene Diagnostics Act, especially on the right to knowledge and ignorance of genetic information [Murphy et al. 2008]; [McDonald and Ellard (2013)]; [Ellard et al. 2008]; [Badenhoop et al. 2008]; [Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde DGPPN (2009)].

Neonatal diabetes mellitus (NDM)

A special form of genetic diabetes is neo-natal diabetes mellitus (NDM) and diabetes that manifests within the first 6 months of life. Clinically, they are classified into 2 subgroups: transient (TNDM) and permanent (PNDM) neonatal diabetes mellitus. For diagnosis of neonatal diabetes or diabetes manifestation up to and including the sixth month of life, see the box “Neonatal diabetes - diagnostic procedure”.

NEONATAL DIABETES - DIAGNOSTIC PROCEDURE

D iagnostic procedure for diabetes manifestation up to the 6th month of life, if necessary up to the 1st year of life

1. Exclusion of pancreatic insufficiency
 ▪ Sonography to rule out pancreatic aplasia
 ▪ Determination of elastase in faeces to exclude exocrine insufficiency
2. If sonography is unremarkable or not assessable:
 ▪ Determination of diabetic autoantibodies (GAD, IA-2, ICA, IAA, ZnT8)
3. If sonography is unremarkable or not assessable, autoantibodies negative and elastase in stool o. B., a molecular genetic analysis should be carried out promptly because of the high therapeutic relevance for the differential diagnosis of:
 ▪ Anomalies of chromosome 6q24 (TNDM)
 ▪ Mutations of the KCNJ11 gene (PNDM, TNDM)
 ▪ Mutations of the ABCC8 gene (PNDM, TNDM)
 ▪ Mutations of insulin gene (PNDM)
4. For reduced elastase in stool and negative molecular genetic analysis for chromosome 6q24, KCNJ11, ABCC8 and insulin gene as well as negative or positive autoantibodies:
 ▪ Examination for rare genetic diseases/genetic syndromes...
The most common MODY forms and their clinical characteristics.

<table>
<thead>
<tr>
<th>MODY type (international share in percent); heredity</th>
<th>Age (Y) at manifestation</th>
<th>Severity of hyperglycaemia</th>
<th>Clinical picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF1A-MODY (MODY3) HNF-1α-(20–50 %) autosomal dominant</td>
<td>14 (4–18)</td>
<td>Severe hyperglycaemia</td>
<td>• Strong increase of FC in OGTT (> 90 mg/dl), low renal threshold (frequent glucosuria in BG values) < 180 mg/dl (< 10 mmol/l)) • Increasing hyperglycaemia with age • Response to sulfonylureas/glinides</td>
</tr>
<tr>
<td>GCK-MODY (MODY2) Glucokinase (20–50 %) autosomal dominant</td>
<td>10 (0–18)</td>
<td>Mild hyperglycaemia</td>
<td>• Often by chance • Fasting BG slightly increased between 99 and 144 mg/dl (5.5–8 mmol/l) • BG increase in the OGTT low (by < 63 mg/dl or < 3.5 mmol/l) • No BG deterioration in old age • Rarely microvascular or macrovascular complications, even without drug therapy</td>
</tr>
<tr>
<td>HNF4A-MODY (MODY1) HNF-4α-(1–5 %) autosomal dominant</td>
<td>17 (5–18)</td>
<td>Significantly hyperglycaemic</td>
<td>• Similar to HNF-1α, but renal threshold normal • Response to sulfonylureas</td>
</tr>
</tbody>
</table>

In the case of etiologically unexplained neonatal diabetes mellitus and diabetes mellitus, which manifests itself up to the 6th month of life, a molecular genetic analysis should be performed as early as possible in order to start appropriate therapy for sulfonylurea-sensitive mutations as early as possible [Flanagan et al. 2006]; [Babenko et al. 2006]; [Krupa et al. 2008]; [Battaglia et al. 2012]; [Shah et al. 2012].

In most cases, insulin therapy is administered first if neonatal diabetes is present. Under in-patient conditions and tight controls, an initial therapy attempt with sulfonylureas may be useful if the result of the molecular genetic examination is expected shortly. In the presence of a mutation of the KCNJ11 or the ABCC8 gene, therapy with sulfonylureas should be attempted as early as possible [Hattersley et al. 2006]; [Pearson et al. 2006]; [Mlynarski et al. 2007]; [Koster et al. 2008]; [Slingerland et al. 2008]; [Thurber et al., 2015].

Diabetes in cystic fibrosis

Since diabetes in cystic fibrosis is often clinically difficult to detect, children with cystic fibrosis as of age 10 should receive an oral glucose tolerance test annually [Lanng et al. 1994]. New studies show better results using CGM to detect glucose variability [Chan et al., 2018].

With a confirmed diagnosis of diabetes, early treatment of cystic fibrosis-related diabetes (CFRD) should be initiated [Nousi-Arvanitakis et al. 2001]; [Rolon et al. 2001]; [Lanng et al. 1994]; [Dobson et al. 2002]; [Frost et al., 2018].

Insulin is to be used for long-term therapy of CF-related diabetes. In the first 12 months after diagnosis, however, a therapy attempt with glinides or sulphonylureas may be undertaken [Ballmann et al. 2014]; [O’Riordan et al. 2008].

If cystic fibrosis is present, a high-calorie, high-fat diet should also be followed after the diagnosis of diabetes. Calorie reduction is contraindicated [O’Riordan et al. 2008].

Imprint (German)

The evidence-based guideline was prepared on behalf of the German Diabetes Society (DDG). The German Diabetes Society is represented by its president (2019–2021 Prof. Dr. Monika Kellerer) and the DDG guideline officer (Prof. Dr. Andreas Neu).

The Guidelines Group is composed of members of the Association for Paediatric Diabetology (AGPD), members of the 2009 Guidelines Group and a patient representative.

Expert group responsible for the 2015 version of the guidelines:

Prof. Dr. A. Neu, Tübingen (Coordinator)
J. Bürger-Büsing, Kaiserslautern (patient representative)
Prof. Dr. T. Danne, Hannover
Dr. A. Dost, Jena
Dr. M. Holder, Stuttgart
Prof. Dr. R. W. Holl, Ulm
Prof. Dr. P.-M. Holtermus, Kiel
PD Dr. T. Kapellen, Leipzig
Prof. Dr. B. Karges, Aachen
Prof. Dr. O. Kordonouri, Hanover
Prof. Dr. K. Lange, Hanover
S. Müller, Ennepetal
PD Dr. K. Raile, Berlin
Dr. R. Schweizer, Tübingen
Dr. S. von Sengbusch, Lübeck
Dr. R. Stachow, Westerland
Dr. V. Wagner, Rostock
PD Dr. S. Wiegand, Berlin
Dr. R. Ziegler, Münster

Literature research:

Dr. Barbara Buchberger (MPH), Hendrick Huppertz, Beate Kossmann, Laura Krabbe, Dr. Jessica Tajana Mattivi at the Endowed Chair of Medical Management/ Stiftungslehrstuhl für Medizinmanagement at the University of Duisburg-Essen (Head Prof. Dr. Jürgen Wasem)

Methodical support:

Dr. Monika Nothacker, Berlin, German Association of the Scientific Medical Professional Societies/Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften (AWMF)

Editorial work:

Andrea Haring, Berlin
Cornelia Berg, Tübingen

Table 3
External reviewer:
Prof. Dr. H. Krude
Specialist in paediatrics, additional training in paediatric endocrinology and diabetology, for the Paediatric Endocrinology Working Group (APE), Berlin (Diabetes and Thyroid Diseases)
Prof. Dr. K. P. Zimmer
Specialist in paediatrics and juvenile medicine, additional training in paediatric gastroenterology, Giessen (Diabetes and Celiac Disease)
Prof. Dr. M. Ballmann
Specialist in paediatrics and juvenile medicine, additional training in paediatric pneumology, for the Paediatric Pneumology Working Group, Siegen (Diabetes in Cystic Fibrosis)
Prof. Dr. A. Fritsche
Specialist in internal medicine, diabetologist, Tübingen

Conflict of Interest

The conflicts of interest of all members of the Guideline Group are detailed in the long version of the Guideline (Table 32).

German Diabetes Association: Clinical Practice Guidelines

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>ABCB9</td>
<td>gene localization for the sulfonylurea receptor 1</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzymes</td>
</tr>
<tr>
<td>ACR</td>
<td>albumin creatinine ratio</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>ADHD</td>
<td>attention deficit/hyperactivity disorder</td>
</tr>
<tr>
<td>AER</td>
<td>albumin excretion rate</td>
</tr>
<tr>
<td>AGA</td>
<td>Working Group for Obesity/Arbeitsgemeinschaft für Adipositas</td>
</tr>
<tr>
<td>AGPDA</td>
<td>Working Group for Paediatric Diabetology/Arbeitsgemeinschaft für Pädiatrische Diabetologie</td>
</tr>
<tr>
<td>AHGPR</td>
<td>Agency for Health Care Policy and Research</td>
</tr>
<tr>
<td>AIHA</td>
<td>autoimmune hemolytic anemia</td>
</tr>
<tr>
<td>Abs</td>
<td>antibodies</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine transaminase = liver enzyme</td>
</tr>
<tr>
<td>APS</td>
<td>Working Group for Paediatric Metabolic Disorders/Arbeitsgemeinschaft für Pädiatrische Stoffwechselstörungen</td>
</tr>
<tr>
<td>PGAs</td>
<td>polyglandular autoimmune syndromes</td>
</tr>
<tr>
<td>AT1 blocker</td>
<td>angiotensin II receptor blocker</td>
</tr>
</tbody>
</table>

AWMF German Association of the Scientific Medical Professional Societies/Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften
BABYDIAB German BabyDiab-Study (German baby diabetes study)
BAR Federal Working Group for Rehabilitation/Bundesarbeitsgemeinschaft für Rehabilitation
BdKJ Association of Diabetic Children and Adolescents/Bund diabetischer Kinder und Jugendlicher
BG body glucose
BMI body mass index
BMI-SDS body mass index standard deviation score
BS blood sugar
CFRD cystic fibrosis-related diabetes (diabetes in cystic fibrosis)
CGM continuous glucose monitoring
CK creatine kinase
C-peptide connecting peptide (connecting peptide) = part of proinsulin
CSII continuous subcutaneous insulin injection = insulin pump
CT computer tomography
DAY German Obesity Society/Deutsche Adipositas Gesellschaft
DAISY Diabetes Autoimmunity Study of the Young (autoimmunity study for adolescents with diabetes)
DCC-Trial Diabetes Control and Complications Trial (study on the control and complications of diabetes)
DDG German Diabetes Society/Deutsche Diabetes Gesellschaft
DEND diabetes epilepsy and neurological delay (genetic syndrome with diabetes, epilepsy and neurological developmental disorder)
DENIS German Nicotinamide Intervention Study/Deutsche Nicotinamide-Intervention-Study
DEPS-R Diabetes Eating Problem Survey - Revised
DGE German Nutrition Society/Deutsche Gesellschaft für Ernährung
DGEM German Society for Nutritional Medicine/Deutsche Gesellschaft für Ernährungsmedizin
DGKJP German Society for Paediatric and Juvenile Psychiatry, Psychosomatics and Psychotherapy/Deutsche Gesellschaft für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie
diab. diabetic
DiabetesDE Diabetes Germany
DIAMYD DiAmyd® Study
DIPP Diabetes Prediction and Prevention Project
DKA diabetic ketoacidosis
dl decilitre
DNSG Diabetes And Nutrition Study Group
DPT-1 Diabetes Prevention Trial - Type 1
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM</td>
<td>Diabetes patient management (documentation system)</td>
</tr>
<tr>
<td>EASD</td>
<td>European Association for the Study of Diabetes</td>
</tr>
<tr>
<td>EDIC-Trial</td>
<td>Epidemiology of Diabetes Interventions and Complications Trial = Follow-up Study of the DCC Trial</td>
</tr>
<tr>
<td>EIF2AK3</td>
<td>gene genetic locus for mutations leading to a genetic syndrome with diabetes</td>
</tr>
<tr>
<td>EC</td>
<td>evidence class (methodological quality of a study according to criteria of evidence-based medicine)</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>ENDIT</td>
<td>European Nicotinamide Intervention Trial</td>
</tr>
<tr>
<td>ES</td>
<td>educational support (therapeutic support in parenting)</td>
</tr>
<tr>
<td>ethn.</td>
<td>ethnic</td>
</tr>
<tr>
<td>fam.</td>
<td>familiar</td>
</tr>
<tr>
<td>FES</td>
<td>family environment scale = scale for the evaluation of social characteristics and the environment of families</td>
</tr>
<tr>
<td>FOXP3</td>
<td>gene genetic locus for mutations leading to genetic syndromes with diabetes</td>
</tr>
<tr>
<td>FST-D</td>
<td>family system therapy for patients with diabetes</td>
</tr>
<tr>
<td>FT3</td>
<td>free triiodothyronine</td>
</tr>
<tr>
<td>FT4</td>
<td>free thyroxine</td>
</tr>
<tr>
<td>g gram</td>
<td>glucose</td>
</tr>
<tr>
<td>GAD</td>
<td>glutamate decarboxylase</td>
</tr>
<tr>
<td>GCK</td>
<td>glucokinase</td>
</tr>
<tr>
<td>h hour</td>
<td>minimum</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycoylzed haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HHS</td>
<td>hyperglycæmic hyperosmolar syndrome</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HNF</td>
<td>hepatocyte nuclear factor</td>
</tr>
<tr>
<td>HTA</td>
<td>health technology assessment = systematic assessment of medical technologies, procedures aids and organizational structures, in which medical services are provided</td>
</tr>
<tr>
<td>I.E.</td>
<td>international unit(s)</td>
</tr>
<tr>
<td>i. m.</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IV</td>
<td>intravenously</td>
</tr>
<tr>
<td>IA-2</td>
<td>tyrosine phosphatase IA-2 antibody</td>
</tr>
<tr>
<td>IAA</td>
<td>insulin autoantibodies</td>
</tr>
<tr>
<td>ICA</td>
<td>islet cell antibody</td>
</tr>
<tr>
<td>ICT</td>
<td>intensified conventional therapy</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>INS</td>
<td>insulin(s)</td>
</tr>
<tr>
<td>IPF-1</td>
<td>geneinsulin promoter factor 1 gene = genetic locus for mutations leading to MODY-4 diabetes</td>
</tr>
<tr>
<td>IPFEX</td>
<td>immunodysregulation polyendocrinopathy enteropathy X-linked syndrome</td>
</tr>
<tr>
<td>IRMA</td>
<td>intraretinal microvascular anomaly</td>
</tr>
<tr>
<td>ISPAD</td>
<td>International Society for Paediatric and Adolescent Diabetes</td>
</tr>
<tr>
<td>ITP</td>
<td>immune thrombocytopenic purpura</td>
</tr>
<tr>
<td>n/a</td>
<td>not available</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalories</td>
</tr>
<tr>
<td>KCNJ11</td>
<td>inward-rectifier potassium ion channel, subfamily J, member 11</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>Kir6.2</td>
<td>gene localization for KCNJ11</td>
</tr>
<tr>
<td>KJHG</td>
<td>child and youth welfare law</td>
</tr>
<tr>
<td>litres</td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LGS</td>
<td>m2low-glucose suspend square meters</td>
</tr>
<tr>
<td>grams</td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td>maximum</td>
</tr>
<tr>
<td>GAD</td>
<td>glutamate decarboxylase</td>
</tr>
<tr>
<td>GCK</td>
<td>glucokinase</td>
</tr>
<tr>
<td>h hour</td>
<td>minimum</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycoylzed haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HHS</td>
<td>hyperglycæmic hyperosmolar syndrome</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HNF</td>
<td>hepatocyte nuclear factor</td>
</tr>
<tr>
<td>HTA</td>
<td>health technology assessment = systematic assessment of medical technologies, procedures aids and organizational structures, in which medical services are provided</td>
</tr>
<tr>
<td>I.E.</td>
<td>international unit(s)</td>
</tr>
<tr>
<td>i. m.</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IV</td>
<td>intravenously</td>
</tr>
<tr>
<td>IA-2</td>
<td>tyrosine phosphatase IA-2 antibody</td>
</tr>
<tr>
<td>IAA</td>
<td>insulin autoantibodies</td>
</tr>
<tr>
<td>ICA</td>
<td>islet cell antibody</td>
</tr>
<tr>
<td>ICT</td>
<td>intensified conventional therapy</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>INS</td>
<td>insulin(s)</td>
</tr>
<tr>
<td>IPFEX</td>
<td>immunodysregulation polyendocrinopathy enteropathy X-linked syndrome</td>
</tr>
<tr>
<td>IRMA</td>
<td>intraretinal microvascular anomaly</td>
</tr>
<tr>
<td>ISPAD</td>
<td>International Society for Paediatric and Adolescent Diabetes</td>
</tr>
<tr>
<td>ITP</td>
<td>immune thrombocytopenic purpura</td>
</tr>
<tr>
<td>n/a</td>
<td>not available</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalories</td>
</tr>
<tr>
<td>KCNJ11</td>
<td>inward-rectifier potassium ion channel, subfamily J, member 11</td>
</tr>
</tbody>
</table>
kg kilogram
BW body weight
Kir6.2 gene localization for KCNJ11
KJHG child and youth welfare law
l litres
LDL LGS
m2 square meters
max. maximum
mg milligram
micro microalbuminuria
min. minimum
avg. average
Mj megajoules
ml millilitres
mm millimetres
mmHg millimetres of mercury = used to measure blood pressure
mmol millimole
mon month(s)
MODY maturity onset diabetes of the young (adult diabetes in adolescents) = monogenetic diabetes
MRI magnetic resonance imaging
n number
NaCl sodium chloride
NDM neonatal diabetes mellitus
NCV nerve conduction velocity
NPH insulin neutral protamine Hawthorn insulin
NYHA New York Heart Association classification system of the New York Heart Association for the severity of heart failure
OGTT oral glucose tolerance test
p p-value probability value - exceeding probability, statistical information
PAL value physical activity level (value for measuring the daily physical activity expenditure)
Pat. patient(s)
pCO2 arterial partial pressure of carbon dioxide
pH potenti Hydrogenii (capacity of hydrogen) = negative logarithm of the hydrogen ion concentration/activity, measure for acidity of a medium
PLGM predictive low glucose management
PNDM permanent neonatal diabetes mellitus
RCT randomized controlled trial
RR Riva Rocci = arterial blood pressure, measured according to the method of Riva Rocci
s. c. subcutaneous
SC standard care (standard treatment)
SEARCH search for diabetes in the youth study (studies for the identification of diabetes in children and adolescents)
SGB criminal code/Strafgesetzbuch
SIGN Scottish Intercollegiate Guidelines Network
sign. significant
SSRI selective serotonin reuptake inhibitor

References

[4] Al Hanshi S., Shann F. Insulin infused at 0.05 vs. 0.1 units/ kg/hr in children admitted to intensive care with diabetic ketoacidosis. Pediatr Crit Care Med 2011; 12: 137–140. EK III

[80] Ceriello A, Giugliano D, Quatraro A, Lefebvre PJ. Antioxidants show glycemia in obese patients with NIDDM. Diabetes Care 1997; 20: 881–887. EK Ib

[149] Diabetes Control and Complications Trial Research Group The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 1995; 44: 968–983. EK Ib

Meltzer LJ, Johnson SB, Prine JM, Banks RA, Desrosiers PM, Silverstein JH. Disordered eating, body mass, and glycemic control in adolescents with type 1 diabetes. Diabetes Care 2001; 24: 678–682. EK III

Miller KM, Beck RW, Bergenstal RM, Goland RS, Miller KM. Glycaemic control of Type 1 diabetes in children and adolescents with type 1 diabetes. Pediatr Diabetes 2018; 19: (Suppl.27) 275–286

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[482] Puttha R, Cooke D, Subbarayan A, Odeka E, Ariyawansa I, Bone M, Doughty I, Patel L, Amin R. Low dose (0.05 units/kg/h) is comparable with standard dose (0.1 units/kg/h) intravenous insulin infusion for the initial treatment of diabetic ketoacidosis in children with type 1 diabetes—an observational study. Pediatr Diabetes 2010; 11: 12–17. EK III</td>
<td></td>
</tr>
</tbody>
</table>

[647] Ziegler AG, Rewers M, Simell O et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013; 309 (23): 2473–2479

