Concerns and Background

The following recommendations are directed to all professional and vocational groups which take care of and support children and adolescents with diabetes, as well as their families. It is also directed to higher level organisations, such as health insurers, which deal with diabetes. This guideline concentrates on the specifics for this age group which are not described in the DDG’s general guidelines for the therapy of type 1 diabetes, or are described there, but somewhat differently [1]. As stated in the specifications of the health ministries of Germany’s states and in keeping with the current practice of many clinics, this paediatric guideline applies to all diabetes patients who are not yet 18 years of age. In individual clinical cases this guideline can also be used for young adults.

Epidemiology and Forms of Diabetes in Childhood and Adolescence

Type 1 Diabetes
Type 1 diabetes is the most frequent metabolic disease in childhood. According to the latest estimates, there are some 10,000 to 15,000 children aged 14 years or under who live in Germany and have type 1 diabetes [2–4]. For persons in Germany aged 19 years or under this figure is 21,000 to 24,000 [3]. These figures are rising at a rate of 3 to 5% per year [4–6]. The number of new cases per year of type 1 diabetes diagnosed among children aged 14 years or under is now twice what it was in the early 1990s. This rate was at 20.9% in 2001 (95% confidence interval of 18.7–23.2). Most of the rise is in the younger age groups.

Type 2 Diabetes
The frequency of type 2 diabetes in this age group has increased in parallel to the rise of overweight and obesity in children and adolescents [7, 8]. Initial population based estimates of type 2 diabetes in children and adolescents in 2002 indicate an incidence of 1.57 per 100,000 inhabitants (95% confidence interval of 0.98–2.42) [9]. Research in Baden-Württemberg from the year 2004 shows that type 2 diabetes occurs with an incidence of 2.3 per 100,000 inhabitants among 0 to 20-year-olds in Germany [10].

Risk Factors, Prevention and Early Recognition

Type 1 Diabetes
General screening for type 1 diabetes should not be conducted among children and adolescents in the general public or in high risk groups (B) [11]. The risk of developing diabetes is three times as high for a child whose father has diabetes than it is for a child whose mother has diabetes [12]. While antibodies and other markers do allow a prediction and risk calculation that a given person will develop diabetes, there are no effective strategies that could prevent manifestation of diabetes [13, 14].

Type 2 Diabetes
An oral glucose tolerance test for early recognition of type 2 diabetes should be conducted for all overweight children (BMI > percentile 90) of age 10 or older who have two or more of the following risk factors (A) [15].

▶ A close blood relation has type 2 diabetes
▶ Membership of a group with elevated risk (e.g. East Asians, Afro-Americans, Hispanics)
▶ Extreme obesity (BMI > Percentile 99.5)
▶ Signs of insulin resistance or of changes associated with it (arterial hypertension, dyslipidemia, elevated transaminases, polycystic ovary syndrome, acanthosis nigricans).
Therapy of Type 1 Diabetes

Beginning of Therapy
Insulin therapy should begin when the diagnosis of type 1 diabetes is made because a child’s metabolism can deteriorate rapidly. A team experienced in treating diabetic children should be consulted as soon as possible [16].

Therapy Objectives
Initial treatment and continual care until the patient turns 18, or possibly 21 in individual cases, should be undertaken by a team experienced in treating diabetic children (A).

It has been shown that specialised care contributes to a reduction of days spent in hospital and admissions to hospital, and to lower HbA1c levels with better disease management and fewer complications [17].

Treatment of type 1 diabetes by the treatment team should comprise (B):
- Insulin therapy
- Age adapted structured education
- Psychosocial care of the family affected.

Individual therapy objectives should be formulated with the patient and his or her family (HbA1c level, blood sugar target ranges, behavioural changes in cases of risky lifestyle, efforts by migrants to be integrated, etc.) (A).

Blood sugar level should be checked between 5 and 8 times a day, or even more frequently in some cases.

Continual Treatment of Type 1 Diabetes
Care of Children in Kindergartens and Schools
Children with diabetes should be cared for in general kindergartens and grade schools (A) [21]. An individual plan should be drawn up for the patient’s educational facility in respect to frequency and intervention levels of the blood sugar measurements, administrations of insulin (mode, time, computation of dosage), times for meals, and symptoms and management of incidents of hypoglycaemia and hyperglycaemia (A) [22].

Care During Transition to Young Adult Age
The transition from paediatric to general medical care affects young diabetics aged 16 to 21 in a life phase of general upheavals and should be guided, for example by special consultation, structured transfer from the paediatrician to a specialist for adults (B) [23–25].

Care during illness and avoidance of health risks
When they are seriously ill or about to undergo surgery, children with diabetes should be referred to a centre that is experienced in and equipped for diabetes. The paediatric diabetologist should be called in (A) [26].

In no case may insulin be completely omitted because of low blood sugar levels or refusal of food. Rather, it is necessary to administer carbohydrates so that lack of substrate and formation of ketone bodies are avoided.

Children with diabetes mellitus should be vaccinated in accordance with the STIKO recommendations (B).

Insulin Treatment
The treatment standard for paediatric patients with type 1 diabetes should be that of intensified insulin therapy (B) [27–29].

Insulin therapy should be conducted in the context of comprehensive diabetes care which includes support of the patient’s family (A).

Insulin therapy should be designed individually for each child (A). Human insulin or insulin analogues should be used for paediatric patients (A) [31–36].

Intravenous insulin treatment should use regular insulin (B).

Short-Acting Insulins and Insulin Analogues
(Prandial Substitution)
In the case of children, short-acting human insulin and insulin analogues display differences in respect to the beginning and duration of their action and, depending on the situation, can be used flexibly for children as prandial substitution [32, 33].

Insulin pump therapy should use short-acting insulin analogues (B).

Long-Acting Insulins and Insulin Analogues
(Basal Substitution)
Both NPH-insulin and long-acting insulin analogues can be used individually for basal insulin substitution in children [37–40].

Insulin Pump Therapy
Insulin pump therapy should be considered when the following indications are present (B) (modified as in [41])
- Small children, especially newborns and pre-school children
- Children and adolescents with pronounced blood sugar rise in the early morning hours (dawn phenomenon)
- Severe hypoglycaemia, recurring and nocturnal hypoglycaemia (despite intensified conventional therapy = ICT)

Table 1 Standard recommended values for blood glucose control [18].

<table>
<thead>
<tr>
<th>Blood sugar control, clinical-chemical assessment¹</th>
<th>Healthy subjects</th>
<th>Metabolism good</th>
<th>Metabolism fair (measures recommended)</th>
<th>Metabolism poor (measures required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>preprandial or fasting BG (mmol/L or mg/dL)</td>
<td>3.6 – 5.6</td>
<td>5 – 8¹</td>
<td>> 8</td>
<td>> 9</td>
</tr>
<tr>
<td>65 – 100</td>
<td>90 – 145</td>
<td>145</td>
<td>145 – 250</td>
<td>162</td>
</tr>
<tr>
<td>postprandial BG</td>
<td>4.5 – 7.0</td>
<td>5 – 10</td>
<td>10 – 14</td>
<td>14</td>
</tr>
<tr>
<td>80 – 126</td>
<td>90 – 180</td>
<td>145</td>
<td>180 – 250</td>
<td>250</td>
</tr>
<tr>
<td>nocturnal BG¹</td>
<td>3.6 – 5.6</td>
<td>4.5 – 9</td>
<td>< 4.2 or > 9</td>
<td>< 4.0 or > 11</td>
</tr>
<tr>
<td>65 – 100</td>
<td>80 – 162</td>
<td>75 or > 162</td>
<td>< 70 or > 200</td>
<td></td>
</tr>
<tr>
<td>HbA1c level (standardised measurement in % by specifications of the DCC trial)</td>
<td>< 6.05</td>
<td>7.5</td>
<td>7.5 – 9.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

¹ These standard values must be adapted to the patient’s individual circumstances. Other standard values apply particularly to small children, patients with severe hypoglycaemia and patients who are not in a position to recognize hypoglycaemia [17].

² If fasting blood glucose is under 72 mg/dL (4 mmol/L) in the morning, the possibility of preceding nocturnal hypoglycaemia should be considered [18].

³ These figures are based on clinical studies, but no strict evidence based recommendations are available.
Medical treatment of diabetic ketoacidosis.

Table 2 Medical treatment of diabetic ketoacidosis.

<table>
<thead>
<tr>
<th>Treatment objective/Indication</th>
<th>Medication</th>
<th>Dose</th>
<th>Time period/sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial stabilisation of circulation (if required)</td>
<td>NaCl 0.9 %</td>
<td>10 – 20 ml/kg i. v.</td>
<td>immediately, over 1 – 2 hours</td>
</tr>
<tr>
<td>administration of fluids after initial stabilisation of circulation</td>
<td>NaCl 0.9 % or Ringer’s solution after 4 – 6 hours; NaCl 0.45 % also possible</td>
<td>at most i. v. daily dose < 1.5 to 2.0 times maintenance requirements in view of age, body weight and body surface.</td>
<td>at least over 36 – 48 hours</td>
</tr>
<tr>
<td>lower blood glucose</td>
<td>regular insulin</td>
<td>0.1 U/kg/h i. v. for fairly young child: 0.05U/kg/h</td>
<td>beginning of insulin administration 1-2 hours after beginning of volume administration; no interruption of insulin administration until pH > 7.3; reduction of blood sugar by 2-5 mmol/L/h (36-90 mg/dL/h)</td>
</tr>
<tr>
<td>avoidance of hypoglycaemia</td>
<td>glucose</td>
<td>final concentration: 5 % glucose/0.45 % NaCl solution</td>
<td>starting at blood sugar = 15 mmol/L (270 mg/dL) or with blood sugar reduction > 5 mmol/L/h (90 mg/dL)</td>
</tr>
<tr>
<td>potassium balance</td>
<td>KCl</td>
<td>40 mmol/L volume; 5 mmol/kg/day i. v.; not > 0.5 mmol/kg/h</td>
<td>immediately if hypokalemia: at start of insulin administration if normokalemia; not until urine production has resumed if hyperkalemia; continual administration until termination of volume administration</td>
</tr>
</tbody>
</table>

The patients (children and adolescents) and their parents or other primary care givers should have continual access to qualified educational activities when diabetes is diagnosed (A) [47, 48].

Persons in authority relative to the patient such as teachers in kindergarten or grade school should be offered diabetes education (A) [21].

The educational sessions should be conducted by a multi-professional diabetes team which has sufficient knowledge of the age specific needs and options of the patients and of the requirements placed on the patients and their families (A).

The sessions should be conducted by all the members of the team and follow uniform, therapy concepts and objectives which they have formulated together (A) [47, 48].

Diabetes education is a continual process which can be successful only through offers that are repeated at least once every two years during long-term care. New therapy concepts (e.g. pump therapy) and new life phases (e.g. enrolment in grade school) should be accompanied by additional explanatory sessions (A) [48-50].

Rehabilitation

In-patient rehabilitation is an option (0) [51 – 56]:

- with persistent lack of skills in dealing with diabetes;
- with existent or currently impending secondary diseases;
- after stationary primary therapy of newly diagnosed diabetes mellitus if no initial education is available at a location near the patient’s home
- with long-term insufficient metabolism control under out-patient conditions, for example with recurrent hypoglycaemia or ketoacidosis
- with significant disruption of activities and/or participation of the child/adolescent in an age appropriate daily routine.

Psychological and Social Risks, Comorbidities and Interventions

When children and adolescents are diagnosed with diabetes, their families should be advised psycho-socially and offered ther-
apeutic assistance in facing diabetes. This should take account of
the mental situation of the parents and other primary care givers (A) [24, 57 – 61].
Particularly in the case of adolescents, one should look for signs of eating disorders and affective disorders (anxieties, depression) and, as appropriate, have a proper diagnosis conducted and intervene early (A).
If there is a psychiatrically relevant disorder, an appropriate psychiatrist or psychologist should be called in to work with the diabetes team on a jointly agreed treatment plan (A) [24, 57, 62 – 71].

Table 3 Long-term complications: screening examinations and interventions.

<table>
<thead>
<tr>
<th>Screening examination and intervals</th>
<th>Recommended screening methods</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. retinopathy:</td>
<td>binocular bimicroscopic funduscopy with dilated pupil, performed by an experienced eye doctor</td>
<td>improvement of glycaemic control</td>
</tr>
<tr>
<td>1. nephropathy:</td>
<td>proof of microalbuminuria:</td>
<td>improvement of glycaemic control</td>
</tr>
<tr>
<td>1. neuropathy:</td>
<td>– history</td>
<td>improvement of glycaemic control</td>
</tr>
<tr>
<td>1. hypertension</td>
<td>– BP at rest</td>
<td></td>
</tr>
<tr>
<td>1. hyperlipidaemia:</td>
<td>determination of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– total cholesterol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– HDL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– LDL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– triglyceride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– improvement of glycaemic control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– life style intervention (activity, salt restriction, weight reduction, reduction of alcohol/nicotine)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– if unsuccessful: ACE inhibitor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– if unsuccessful, statins if patient at least 8 years old</td>
<td></td>
</tr>
</tbody>
</table>

Hyperglycaemia > 11 mmol/L (200 mg/dL)
Ketonuria and ketones detected in serum. Diabetic ketoacidosis is a potentially life-threatening disease. It should be treated at once in a specialised facility by a diabetes team that is experienced in treating children. There should be a written plan for treating diabetic ketoacidosis in children and adolescents (A) [72-74]. The therapy objectives for ketoacidosis should be as follows (A):
- Stabilisation of circulation with initial bolus volume with isotonic solution, followed by
- Slow balancing of fluid and electrolyte balance,
- Slow normalisation of blood sugar,
- Equalisation of acidosis and ketones,
- Avoidance of therapy complications (cerebral edema, hypokalemia),
- Diagnosis and therapy of the factors responsible.
Treatment of severe diabetic ketoacidosis should include clinical observation and monitoring at least once an hour (A) [24, 75, 76].
Patients with severe diabetic ketoacidosis and increased risk of cerebral edema should be treated at once in an intensive care unit or specialised diabetes unit with comparable equipment by a diabetes team experienced in treating children [11, 75]. Patients with clear signs of cerebral edema should be treated at once with mannitol i.v. (0.5-1 g/kg) for 20 minutes or 3% hypertonic saline solution i.v. (5-10 ml/kg for 30 minutes to 2 hours) before other diagnostic measures (MRI) are taken. (A) [24, 74, 77–81].

Hypoglycaemia

Hypoglycaemia is the most frequent acute complication of diabetes. Children and adolescents with type 1 diabetes should always carry with them short-acting carbohydrates in the form of dextrose or the like so that they are able to treat slight hypoglycaemia at once and thus prevent severe hypoglycaemia (A). Parents and other primary care givers should be shown how to administer a glucagon injection and take other immediate action (A). Care givers such as in nursery schools and kindergartens as well as teachers in schools should likewise receive instruction in the risks and treatment options for hypoglycaemia (B).

If the child or adolescent’s ability to notice hypoglycaemia is impaired, then a higher blood sugar level should be aimed for temporarily. (A) [24, 82].

Long-Term Complications and Preventive Checkups

The HbA1c level should be measured every three months as a check of metabolic control (A) [28, 29, 83].

Associated Autoimmune Diseases

Diagnosis and Therapy of Thyroid Diseases

The thyroid stimulating hormone and thyroid autoantibody levels (TPO-AK, Tg-AK) should be determined in children and adolescents when they are diagnosed with diabetes and regularly at one to two year intervals thereafter of if any thyroid symptoms appear (A) [24, 84, 85]. If TPO autoantibodies and/or a TSH increase are detected, then a sonography of the thyroid should be taken (A).

Diagnosis and Therapy of Coeliac Disease

Children and adolescents should be examined for coeliac disease when they are first diagnosed with diabetes and regularly at one to two year intervals thereafter or if any symptoms thereof appear (A) [24, 86–88]. The patient should be put on a gluten-free diet if symptoms or extraintestinal manifestations of coeliac disease are present and serology and biopsy are positive. (A) [86, 89–91].

If the patient is asymptomatic, the decisions on whether to place the patient on a gluten-free diet and on further checkups should be taken together with the paediatric gastroenterologist (B).

Other Forms of Diabetes in Children and Adolescents

Type 2 Diabetes

Type 2 diabetes should be diagnosed in adolescents on the basis of the normal range for fasting glucose and the OGTT using the standard or reference method (A).

If the test result meets either of the following conditions but the patient is asymptomatic, the result should be confirmed by another test on some other day [92]:

Fig. 2 Treatment of type 2 diabetes in children and adolescents [93].
► fasting glucose: > 126 mg/dL (> 7.0 mmol/L),
► OGTT: 2-h level > 200 mg/dL (> 11.1 mmol/L).
Indications for distinguishing between type 2 and type 1 diabetes can be delivered by the following additional laboratory tests (0):
► C-peptide
► diabetic specific autoantibodies (GAD, IA2, ICA, IAA) [92, 93]
Therapy of adolescents for type 2 diabetes should aim to achieve fasting glucose levels under 126 mg/dL and an HbA1c level under 7 % (A) [94, 95].
Oral antidiabetics have to be used when metabolism control by life style intervention proves to be insufficient. Metformin is the agent of first choice (A) [96–99].

Monogenetic Diabetes
In cases of definite suspicions, a genetic diagnosis of the most frequent MODY forms (Table 4) should be conducted because of their significance for therapy and long-term prognosis (B). For legal reasons, the patient must first be given full advice and explanations [100, 101].

Neonatal Diabetes Mellitus (NDM)
Neonatal diabetes mellitus (NDM) and the diabetes which appears in the first six months of life are special forms of genetically caused diabetes. There are two subgroups clinically speaking:

<table>
<thead>
<tr>
<th>Table 4</th>
<th>The most frequent MODY forms and their clinical characteristics [100, 102].</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODY type</td>
<td>Mode of inheritance</td>
</tr>
<tr>
<td>MODY 3</td>
<td>HNF-1α</td>
</tr>
<tr>
<td>MODY 2</td>
<td>glucokinase</td>
</tr>
<tr>
<td>MODY 1</td>
<td>HNF-4α</td>
</tr>
</tbody>
</table>

1. exclusion of pancreatic insufficiency
 – sonography to exclude pancreatic aplasia
 – determination of elastase in feces to exclude exocrine pancreatic insufficiency
2. if sonograph unremarkable or not usable:
 – determination of diabetes specific autoantibodies (GAD, IA2, ICA, IAA)
3. if sonograph unremarkable or not usable, autoantibodies negative and elastase in feces normal: conduct molecular-genetic analyses for differential diagnosis of:
 – abnormalities of chromosome 6q24 (TNDM)
 – mutations of the KCNJ11 gene (PNDM, TNDM)
 – mutations of the ABCC8 gene (PNDM, TNDM)
 – mutations of the insulin gene (PNDM)
4. in case of low elastase in feces with negative molecular genetic analysis regarding chromosomes 6q24, KCNJ11, ABCC and the insulin gene and negative or positive autoantibodies, examine for less frequent genetic disease/genetic syndrome

Table 5 Diagnostic approach with diabetes manifestation up to age 6 months, possibly age 1 year.

Neu A et al. Diagnosis, Therapy and ... Exp Clin Endocrinol Diabetes 2014; 122: 425–434
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCL</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>DGrPR</td>
<td>German Society for Paediatric Rehabilitation and Prevention</td>
</tr>
<tr>
<td>BG</td>
<td>blood glucose</td>
</tr>
<tr>
<td>NF</td>
<td>low frequency</td>
</tr>
<tr>
<td>APE</td>
<td>Paediatric Endocrinology Study Group</td>
</tr>
<tr>
<td>C-Peptid</td>
<td>connecting peptide</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>ABCC8 gene</td>
<td>Gene Localisation for Sulfonylurea Receptor 1</td>
</tr>
<tr>
<td>ACR</td>
<td>albumin creatinine ratio</td>
</tr>
<tr>
<td>AZQ</td>
<td>Medical Centre for Quality in Medicine</td>
</tr>
<tr>
<td>AGPD</td>
<td>Paediatric Diabetology Study Group</td>
</tr>
<tr>
<td>AT-1 blocker</td>
<td>angiotensin type 1 receptor blocker</td>
</tr>
<tr>
<td>BAR</td>
<td>German Federal Study Group for Rehabilitation</td>
</tr>
<tr>
<td>BdKJ</td>
<td>German Association of Diabetic Children and Adolescents</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>bpm</td>
<td>beats per minute</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>CFRD</td>
<td>Cystic Fibrosis Related Diabetes</td>
</tr>
<tr>
<td>CK</td>
<td>creatine kinase</td>
</tr>
<tr>
<td>DAG</td>
<td>German Obesity Association</td>
</tr>
<tr>
<td>DDG</td>
<td>German Diabetes Association</td>
</tr>
<tr>
<td>DELBI</td>
<td>German Instrument for Assessing Guidelines</td>
</tr>
<tr>
<td>DGE</td>
<td>German Nutrition Association</td>
</tr>
<tr>
<td>DGM</td>
<td>German Association for Nutritional Medicine</td>
</tr>
<tr>
<td>DiabetesDE</td>
<td>Diabetes Germany</td>
</tr>
<tr>
<td>DPV</td>
<td>Diabetes Patient Documentation</td>
</tr>
<tr>
<td>fT4</td>
<td>free thyroxin</td>
</tr>
<tr>
<td>GAD</td>
<td>glutamate dehydrogenase</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycosylated hemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>IA2</td>
<td>tyrosine phosphatase IA2 antibody</td>
</tr>
<tr>
<td>IAA</td>
<td>insulin autoantibody</td>
</tr>
<tr>
<td>ICA</td>
<td>islet cell antibodies</td>
</tr>
<tr>
<td>ICT</td>
<td>intensified conventional therapy</td>
</tr>
<tr>
<td>KCNJ11</td>
<td>potassium inwardly-rectifying channel, subfamily J, member 11</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>MODY</td>
<td>maturity onset diabetes of the young</td>
</tr>
<tr>
<td>MRT</td>
<td>magnetic resonance tomography</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NPH-Insulin</td>
<td>neutral protamine Hagedorn insulin</td>
</tr>
<tr>
<td>OGTT</td>
<td>oral glucose tolerance test</td>
</tr>
<tr>
<td>PDM</td>
<td>permanent neonatal diabetes mellitus</td>
</tr>
<tr>
<td>pH</td>
<td>potentiad hydrogeni (effectiveness of hydrogen) = negative decadic logarithm of hydrogen ion activity</td>
</tr>
<tr>
<td>SGB</td>
<td>German Social Law Book</td>
</tr>
<tr>
<td>STIKO</td>
<td>Standing Committee on Vaccination of the Federal Republic of Germany</td>
</tr>
<tr>
<td>Tg</td>
<td>thyroglobulin</td>
</tr>
<tr>
<td>TNDM</td>
<td>transient neonatal diabetes mellitus</td>
</tr>
<tr>
<td>TPO-AK</td>
<td>thyroid peroxidase antibody</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid stimulating hormone/thyrotropin</td>
</tr>
</tbody>
</table>

Affiliations

1. Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Tübingen
2. Klinik für Kinder und Jugendliche, Evangelisches Krankenhaus GmbH, Oberhausen
3. Bund diabetischer Kinder und Jugendlicher e.V., Kaiserslautern
4. Diabetes-Zentrum für Kinder und Jugendliche, Kinderkrankenhaus auf der Bult, Hannover
5. Altonaer Kinderkrankenhaus gGmbH, Hamburg
6. Kindermedizinisches Versorgungszentrum am Wilhelmstift, Hamburg
7. Abt. Epidemiologie, Universitätsklinikum Ulm
8. Sektion Endokrinologie und Diabetologie, RWTH Aachen
9. Universitätsklinik und Poliklinik für Kinder und Jugendliche, Leipzig
10. Kinder- und Jugendklinik des Universitätsklinikums Erlangen
11. Medizinische Hochschule, Medizinische Psychologie, Hannover
12. Katholisches Kinderkrankenhaus Wilhelmstift, Hamburg
14. Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden
15. Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
16. Bundesverband Bunter Kreis e.V., Institut für Sozialmedizin in der Pädiatrie, Augsburg
17. Fachklinik Sylt für Kinder und Jugendliche, Westerland
18. Diabetologische Schwerpunktpraxis für Kinder- und Jugendmedizin, Klinikum Bremen-Mitte gGmbH, Campus Lübeck
19. DiabetesDE Diabetes Germany
20. DGEM German Association for Nutritional Medicine
21. DGE German Diabetes Association
22. DAG German Obesity Association
23. DDG German Diabetes Association
24. DELBI German Instrument for Assessing Guidelines
25. DGE German Nutrition Association
26. DGM German Association for Nutritional Medicine

References

6. Rosenbauer J, Icks A, Schmitter D et al. Incidence of childhood Type 1 diabetes mellitus is increasing at all ages in Germany. Diabetologia 2002; 45: 457 – 458
11. Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council (NHMRC). Clinical practice guidelines: Type 1 diabetes in children and adolescents; 2005, EK IV
14 Clinical practice guidelines: Type 1 diabetes in children and adolescents; 2005, EK 1b
17 Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council (NHMRC). Clinical practice guidelines: Type 1 diabetes in children and adolescents; 2005, EK II b-III
24 Australasian Paediatric Endocrine Group, Department of Health and Ageing, National Health and Medical Research Council (NHMRC). Clinical practice guidelines: Type 1 diabetes in children and adolescents; 2005
27 Diabetes Control and Complications Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 1995; 44: 968 – 983
44 Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaff für Ernährung (ÖGGE), Schweizerische Gesellschaft für Ernährungsforschung (SGE), Schweizerische Vereinigung für Ernährung (SVE). Referenzwerte für die Nährstoffzufuhr. Neustadt/Weinstraße: Neuer Umschau Buchverl; 2008
72 Australasian Paediatric Endocrine Group. Department of Health and Ageing, National Health and Medical Research Council (NHMRC). Clinical practice guidelines: Type 1 diabetes in children and adolescents; 2005, Ek III/IV
101 Badenhoop K, Kordonouri O, Machicao F. Empfehlungen zur molekulargenetischen Diagnostik bei Verdacht auf MODY. DDG 2008
103 Hananag SE, Edghill EL, Gloyan AL, et al. Mutations in KIR6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia 2006; 49: 1190–1197
Annex

Grid for grading recommendations.

<table>
<thead>
<tr>
<th>Grade of recommendation</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>strong</td>
<td>should / should not</td>
</tr>
<tr>
<td>recommendation</td>
<td></td>
<td>(German: “soll”)</td>
</tr>
<tr>
<td>B</td>
<td>recommendation</td>
<td>ought to / ought not to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(German: “sollte”)</td>
</tr>
<tr>
<td>0</td>
<td>open</td>
<td>may be considered / no</td>
</tr>
<tr>
<td>recommendation</td>
<td></td>
<td>specific recommendation</td>
</tr>
</tbody>
</table>

The guideline recommendations are based on systematic literature searches. A formal consensus was reached for each recommendation with more than 75 % acceptance.